An Algorithmic Theory of Numbers, Graphs and Convexity, Laszlo Lovasz, SIAM, 1987, 0898712033, 9780898712032, 91 pages. A study of how complexity questions in computing interact with classical mathematics in the numerical analysis of issues in algorithm design. Algorithmic designers concerned with linear and nonlinear combinatorial optimization will find this volume especially useful. Two algorithms are studied in detail: the ellipsoid method and the simultaneous diophantine approximation method. Although both were developed to study, on a theoretical level, the feasibility of computing some specialized problems in polynomial time, they appear to have practical applications. The book first describes use of the simultaneous diophantine method to develop sophisticated rounding procedures. Then a model is described to compute upper and lower bounds on various measures of convex bodies. Use of the two algorithms is brought together by the author in a study of polyhedra with rational vertices. The book closes with some applications of the results to combinatorial optimization..

DOWNLOAD FULL VERSION HERE

Combinatorial problems and exercises, László Lovász, 1993, Mathematics, 639 pages. The main purpose of this book is to provide help in learning existing techniques in combinatorics. The most effective way of learning such techniques is to solve exercises and

Dürer die Koeffizienten von Kreisteilungspolynomen, Rolf Bungers, 1934, 14 pages.

Lectures on Discrete Geometry, Jiří Matoušek, May 2, 2002, Mathematics, 481 pages. The main topics in this introductory text to discrete geometry include basics on convex sets, convex polytopes and hyperplane arrangements, combinatorial complexity of

IA-64 and elementary functions speed and precision, Peter Markstein, 2000, Computers, 298 pages. After years of development and anticipation, the new Intel IA-64 processor architecture is set to begin shipping in mid-2000. In this book, leading HP computer architect Dr

Cifrari e codici segreti, Alfredo Rizzi, 2010, 125 pages.

Théorie des nombres, Maurice Kraitchik, 1922, Mathematics.